Protease inhibitor 15, a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat
نویسندگان
چکیده
The inbred Brown Norway (BN) rat develops spontaneous ruptures of the internal elastic lamina (RIEL) of the abdominal aorta (AA) and iliac arteries. Prior studies with crosses of the BN/Orl RJ (susceptible) and LOU/M (resistant) showed the presence of a significant QTL on chromosome 5 and the production of congenic rats proved the involvement of this locus. In this study, we further dissected the above-mentioned QTL by creating a new panel of LOU.BN(chr5) congenic and subcongenic lines and reduced the locus to 5.2 Mb. Then we studied 1,002 heterogeneous stock (HS) rats, whose phenotyping revealed a low prevalence and high variability for RIEL. High-resolution mapping in the HS panel detected the major locus on chromosome 5 (log P > 35) and refined it to 1.4 Mb. Subsequently, RNA-seq analysis on AA of BN, congenics, and LOU revealed expression differences for only protease inhibitor 15 (Pi15) gene and a putative long intergenic noncoding RNA (lincRNA) within the linkage region. The high abundance of lincRNA with respect to reduced Pi15 expression, in conjunction with exertion of longitudinal strain, may be related to RIEL, indicating the potential importance of proteases in biological processes related to defective aortic internal elastic lamina structure. Similar mechanisms may be involved in aneurysm initiation in the human AA.
منابع مشابه
Changes in aortic stiffness related to elastic fiber network anomalies in the Brown Norway rat during maturation and aging.
Adult Brown Norway (BN) rats exhibit numerous internal elastic lamina (IEL) ruptures in the abdominal aorta (AA) and a lower aortic elastin-to-collagen ratio (E/C) compared with other strains. We studied here AA mechanical properties in BN compared with control strains. AA stiffness (assessed by plotting elastic modulus/wall-stress curves obtained under anesthesia), thoracic aorta elastin and c...
متن کاملCharacteristics of the aortic elastic network and related phenotypes in seven inbred rat strains.
Extracellular matrix (ECM) molecules such as elastin and collagen provide mechanical support to the vessel wall and are essential for vascular function. Evidence that genetic factors influence aortic ECM composition and organization was concluded from our previous studies showing that the inbred Brown Norway (BN) rat differs significantly from the outbred Long-Evans (LE) and the inbred LOU rat ...
متن کاملQuantitative genetic basis of arterial phenotypes in the Brown Norway rat.
The Brown Norway (BN) rat presents several genetically determined arterial phenotypes of interest, i.e., ruptures of the internal elastic lamina (RIEL) in the abdominal aorta (AA), iliac (IAs), and renal arteries, aortic elastin deficit and higher frequency of persistent ductus arteriosus (PDA) than other strains. We investigated the genetic basis of these phenotypes. We established a backcross...
متن کاملCystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice.
The pathogenesis of atherosclerosis and abdominal aortic aneurysm involves substantial proteolysis of the arterial extracellular matrix. The lysosomal cysteine proteases can exert potent elastolytic and collagenolytic activity. Human atherosclerotic plaques have increased cysteine protease content and decreased levels of the endogenous inhibitor cystatin C, suggesting an imbalance that would fa...
متن کاملAltered regulation of matrix metalloproteinase-2 in aortic remodeling during aging.
To elucidate potential mechanisms of enhanced type 2 matrix metalloprotease levels and activity within the thickened aged rat aorta, the present study measured its mRNA and protein levels and those of its membrane bound activator, MT1-MMP, its endogenous tissue inhibitor, TIMP-2, tissue type, and urokinase plasminogen activators and their receptors, and an inhibitor of plasminogen activation in...
متن کامل